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Abstract. We investigate in detail the integrable deformations of the classical Heisenberg 
model by use of the prolongation theory of Wahlquist and Estabrook. For the first-order 
deformations, our results coincide with those obtained by Mikhailov and Shabat. For the 
higher-order deformations, there exist arbitrary N-order isotropic integrable deformations, 
but the anisotropic integrable deformations are not found. Finally it is pointed out that 
these higher-order isotropic deformed Heisenberg spin equations are equivalent to the 
generalised nonlinear Schrodinger equations. 

1. Introduction 

It is worthwhile investigating the integrable deformations of the one-dimensional 
classical Heisenberg model. This is because such spin equations as, for example, the 
Landau-Lifshitz equation, will appear if one takes into account the anisotropy of the 
magnet, the magnetic-dipole interaction, biquadratic interaction and so on. 

Recently, Mikhailov and Shabat [ 13 investigated the first-order deformations using 
the equivalence between the Heisenberg spin equations and the nonlinear Schrodinger 
equations. Some higher-order deformations have also been discussed [2,3]. 

It is well known that all nonlinear evolution equations which are completely 
integrable possess a non-Abelian prolongation structure [4,5]. This paper is devoted 
to investigating the prolongation structure of the deformed Heisenberg model, so that 
the integrable deformations can be obtained. 

2. The first-order deformations 

We consider the integrable Heisenberg spin equations of the form 

S , = S X S x x + E ( s , S x )  (1) 

where S ’ S  = 1 and s -  E = 0. Taking sa,, (a  = 1,2,3) as new independent variables, then 
a set of 2-forms giving rise to equation (1) is 

LY, = ds, A d t  - dx A dt  

CY,+, = ds, A dx + &ah& ds,,, A dt  + E,  dx A dt  (2) 
a, = sa ds,,, A dt  + sa,, ds, A dt  = 0 

which obviously constitutes a closed ideal I, i.e. 
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d a ,  = E A ,  A aj i , j = l , 2  ,..., 7 
1.1 

(3) 

where f;, is some set of 1-forms. According to the prolongation scheme [4], we seek 
a set of 1-forms 

Wk = dyk + F k  d x +  Gk dt k =  1 , 2 , .  . . , n (4) 
where F k  and Gk are functions of ( sa ,  sa ,x ;  y k )  which demand that the prolonged 
ideal f = { aj ,  W k }  be closed. That is 

where g f  and n f  are some sets of 0-forms and 1-forms, respectively. This requirement 
gives the integrabilitiy conditions of (1) 

where [ F, GIk = 

= 0 G:e.r = -EabrSbFtc S~ , ,G:~-E ,F:~- [F ,  GIk=O ( 6 )  
(F’G;,  - GIF,kl). 

Equations ( 6 )  have the solutions 
3 3 

F = c dasax, G = 2 [day, + 7 (sb)dasa + ha& 1% (7) 
a = l  a = l  

where Y = ( v l ,  v 2 ,  v3)  = s x s,, x, depend only on the prolongation variables y k  and 
form the 4 2 )  Lie algebra, i.e. [x,, xb] = EabcXc  and 

( d :  - d: )d ,  + ( 5 2  - J3)d2d3 + p (  B2 - B3)dl= 0 
( d :  - d ;)d2 + Q (J3 - Jl)dld3 + p(  B3 - Bl)d2 = 0 

( d :  - d:)d3 + ( J l  - J2)dl d2 + p (Bl  - Bz)d3 = 0 

here, J = diag(J, , J 2 ,  J 3 ) ,  B = diag( BI , B 2 ,  B3) ,  a,  p, y, J, and B, are constants. In 
determining v ( s b ) ,  we use the condition s * E  = 0. 

From (8), we can see that (1) can be only parameterised in the following cases. 
( i )  When a = /3 = 0, then d, = &A. Here 8, = i l  and A is the spectral parameter, 

(ii) When a = 0, then d ,  = (p/sn(A, [))SI, d2 = (pcn(A, [)/sn(A, [ ) ) a 2 ,  d3 = 

(iii) When p = 0, then d ,  = ( p 2  cn(A, 6) dn(A, [)/sn2(A, [))SI, d ,  = 

which guarantees the integrability of (1). 

(pdn(A, t)/sn(A, O)&,  where p2 = P(Bl  - B2) ,  p 2 t 2  = P(Bl - B3). 

(P‘ c n ( ~ ,  O / s n ’ ( ~ ,  t ) ) s 2 ,  d3 = (P’ M A ,  t ) / s n ’ ( ~ ,  t ) ) s 3 ,  where p 2 =  ~ ( ~ ~ - ~ 3 ) ~ l ~ 2 ~ 3 ,  

p 2 t 2  = (Jl  - J2)81 8283. 
(iv) When Ja=Jb and B,=Bb, then da=8,p sinh A, db=SbP sinh A, d,= 

8,p cosh A + $ C X ( J ~ - J ~ ) ~ ~ ~ ~ ,  where P ~ = & Y ~ ( J ~ - J , ) ~ + ~ ( B ~ - B , ) .  
The Lax pair for (1) is 

U = Flxos-jima = - t i c  das,aa 
a 

where a, are Pauli matrices. 
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3. The higher-order deformations 

In this section, we consider the more general integrable spin equations of the form 

s, = s X s,, + E N E N ( s ,  sx, . . , ~ ( N - I I ~ )  

(10) 
if N odd 
if N even 

E N  [ S N X  - (s  * SNX ) s 1 
+ {(-1)(N-1"2 ( - 1 y 2 E N s  x SN, 

where spx = d P s / a x P ,  N is an arbitrary positive integer and E~ is the deformation 
parameter. When N = 1 and 2, (10) reduces the first-order deformed spin equations 
discussed in section 2. Here, we restrict N 3 3. 

Performing the same procedures in section 2, we obtain the integrability conditions 
for (10) as follows: 

We assume that the equations above have the solutions 

N 

p = l  
F = Asax, = AS G=A[S,S,]-hZS+~N A P O N - p + l  

where @, = @ : ( s a ,  s a , , ,  - . , s a , ( r - l j x ) X a *  

Substituting (12) into (1 l ) ,  we have 

E N  = s a , i x @ ~ , s ~ , , , - , , ;  (13c) 

From (13a), we have 0, = S. Using the (13b) and (13c) and the condition 
S b s a , i x @  fis,,,, - I ,  = 0, we can obtain 0, and E N .  We note that the condition s . E  = 0 is 
self-satisfied. Now, we write down the several higher-order isotropic integrable defor- 
med spin equations. 

(i)  When N = 3, we have 

s, = s x  s , , - ~ E ~ ( s , ' s , ) s , - 3 3 E ~ ( s , ~ S x , ) ~ - & 3 ~ 3 , .  (14) 

s, = s x s,, + $ E 4 (  s, . s, ) s x s,, + 5 E4( s, * sxx ) s x s, + E4S x s4,. (15) 

(i i)  When N = 4, we have 

(iii) When N = 5, we have 
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4. Equivalence 

The equivalence between (14)  and ( 1 5 )  and the generalised nonlinear Schrodinger 
equations has been discussed in [2,3] .  In this section, we shall point out that (16) is 
also equivalent to the generalised nonlinear Schrodinger equation, which is also 
completely integrable. It is obvious that this equivalence exists for the much higher- 
order isotropic deformed spin equations. 

Following Lakshmanan [ 6 ] ,  we map ( 1 6 )  on a moving helical space curve described 
by the orthogonal trihedral e, which satisfy the Serret-Frenet equations 

e,, = k e 2  e,, = - ke, + re3 e3, = -re2 (17)  

where the curvature is given by k = (e1,.e,,)"2 and the torsion is given by r = 
k-,e, . (e l ,  x el,,). Taking e, = s and using (16) and (17) ,  we obtain 

e,, = (%e,) x e, ( 1 8 )  

where 

k-'k,, - r2 + &5($k47 - 3k2r3 + r5 + y k k , , ~  + ? k : ~  + 5 k - ' k 4 , ~  

- 10k-'kx,r3-30k-'k,r2r, - 10r2r,, - 1 5 r r ~ + ~ k k , r ,  

+ik2r,,+ 10k-'k,,r,+ 10k-'k,,r,,+5k-1k,r3,+ r4,) 

Cl2  = - k, + & 5 (  -6 k 2  k , ~  - k3 7, - 4 k 3 , ~  + 4 k,r3 + 6 kr2 7, 

- 6k,,r, - 4k,rXx -- kr3,) 

a3 = -kr+ &5(:k5+ kr4 -3k3r2+$k2kxX +;kk: + k4, 

- 6 k , , ~ ~ - l 2 k , ~ ~ , - 4 k ~ ~ , ,  -3k.r:). 

Using the compatibility condition e,,,, = e,,,,, we have 

k, = - 2 k , ~ -  k r , + & g ( - 1 5 k 2 k x ~ ' - ~ k 3 ~ ~ , -  1 0 k 3 , ~ ~ + 5 k , ~ ~ +  10kr3r, 

-3Ok,,r~, - 2 O k , ~ ~ , , - 5 k ~ ~ ~ ~ + $ k ~ k , +  lOkk,k,, 

+$k2k3, +$k: - 15k,~: - lOk~,~,,  + k5,) 
r, = [ ~ k 2 - r 2 + k - I k x x + ~ 5 ( $ k 4 r - 5 k 2 r 3 + ~ k k , , r + ~ k ~ r - 1 0 r  2 r,. 

+ r5 - 1 5 r r ~ + ~ k k , r ,  +$k2r,, + r4, + 5k-'k4,r 

- 1 0 k - ' k , , ~ ~ - 3 0 k - ' k , ~ ~ ~ , +  10k-'k3,r, 

+ 10k-'k,,rx,+ 5k-'k,r3,)],. 

Taking the complex transformation [ 6 ]  

(21)  

equations (20)  then become the generalised nonlinear Schrodinger equation 

~ I L , + I L , , + ~ ~ J ~ I ' I L - ~ ~ ~ ~ ~ ~ ~ I I L , ~ ~ J ~ ~ , + ~ ~ ~ I L ~ ~ I L , + ~ ~ J ~ * J ~ , J ~ ~ ~ + ~ ~ ~ J ~ ~ ~ ~ J ~ ~ ~ + ~ ~ ~ I = ~  (22) 

which is the equivalent form of (16).  
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One can verify directly that (16) and (22) are also gauge equivalent under the trans- 
formations [7] 

a) = g - 1 4  u 5 = g - ' u s g - g - l g ,  v, = g-'u,g - g - ' g ,  (25) 

where U, and V, denote the Lax pair for (16), u , / ~ = ~ =  g X g - ' ,  t 1 , 1 ~ = ~ = g ~ g - l  and 
s,a, = g - ' a 3 g .  

5. Conclusion 

We have investigated the integrable deformations of the Heisenberg model. From (1 l) ,  
we do not obtain the anisotropic integrable deformations. It is obvious that the linear 
combinations of these isotropic deformations are also completely integrable, i.e. 

are integrable. This property can be seen easily from the integrability conditions of 
(26). The equations above are also equivalent to the generalised nonlinear Schrodinger 
equations. 
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